
Abstract—Most of the studies on rehabilitation robots con-
sider the human arm inertia and the gravity torque as system
disturbances. Individual anthropometry varies from patient to
patient, and therefore human limbs are not modelled. Some
studies used the Disturbance Observer (DOB) as a method of
disturbance rejection. However, if the inertia and gravity torque
parameters of the human arm could be estimated, they could
be effectively used in the controller loop to achieve precise
motion control. This paper proposes a novel Reaction Torque
Observer (RTOB) based estimation technique which updates
parameters using learning and recursive algorithms in real-time.
The proposed method is applicable to many robot systems where
the load inertia or the load is not known. A simulation was
carried out with realistic parameters to compare the performance
of two competing methods proposed namely, Adaptive Linear
Neuron (ADALINE) and Recursive Least Squares (RLS). Results
show that the RLS method outperforms the ADALINE method
based on the performance criteria of accuracy, precision and
convergence speed for estimating the inertia.

Keywords—Inertia Estimation, Reaction Torque Observer, AI-
based, Rehabilitation, ADALINE, Recursive Least Squares

I. INTRODUCTION

Recovery from reduced range of motion is an important
part in rehabilitation of sensorimotor functions after a stroke or
a spinal cord injury. There are several rehabilitation techniques
used to recover from reduced Range of Motion (ROM) caused
by stroke or bone fracture. These are passive ROM, active
assisted ROM, active ROM exercises to recover from the
reduced ROM and resistance exercises to build up the strength.
In passive exercises, the therapist will move the impaired
limb along with muscles and joints through full range of
motion while the patient does not exert any effort. It has
a positive effect on repairing joints [1]. Patients with the
opportunity to undergo passive ROM exercises early in the
recovery process, benefits from reduced hospital stay and are
able to return to daily activities sooner. In active assisted
ROM exercises, if the patient’s muscles cannot accomplish
the complete movement, the therapist will assist as needed.
Active assisted ROM exercises are used to improve the elbow
motion. Active ROM exercises relies on the muscles of the
patient. The patient performs the exercise by himself moving
as far as possible in each direction. In resistance training the

therapist will hold the patient’s arm and apply resistance force
against the patient’s arm movement. This is used to strengthen
the muscles.

Rehabilitation robotics provides efficient therapy for pa-
tients by incorporating robotic devices to the traditional re-
habilitation process. It is advantageous for both the patient
and the therapist where the patient benefits from intensive
training while the therapist can be released from exhaustive
manual therapy. The accurate measurements provided by the
robotic devices involved help extensively to keep a track of
the improvement of the patient health. This in turn increases
the therapist’s capacity to handle more patients and also to
concentrate more on the treatment plan [2]. Studies on animals
suggest that performing 400-600 repetitions can help make
structural neurological changes[3]. However manual therapy
without the assistance of rehabilitation robotics limits the num-
ber of repetitions to 40-60 per session. Where human attention
span and reflexes are subjective from therapist to therapist,
a robot can detect sudden changes of the joint resistance
consistently making it a better solution. Comparison of Fugl-
Meyer assessment of sensorimotor recovery also shows that
the robot aided therapy has larger improvements compared to
the conventional manual therapy [4]. Therefore, rehabilitation
robotics is becoming increasingly popular.

A number of rehabilitation robots have been developed to
provide all kinds of ROM exercises. These robots are often
subjected to unknown disturbances from the environment as
well as the disturbances invoked by the rehabilitee. Therefore
the controller performance may deteriorate. The disturbances
caused by the gravity, inertia and friction forces are usually
dominant. In a recent work by Urgulu et al. a rehabilitation
robot with gravity compensation was designed with the gravity
effect of the patient’s arm modelled as a disturbance [5]. Com-
pensation of the disturbance caused by the gravity increases
the overall system robustness. However, the weight and the
inertia of the patient arm were not estimated. The inertia of a
human arm was identified in advance, assuming it is a constant
[6]. However, this is not the case in rehabilitation systems as
it may change with time. In this study, the movement of the
exoskeleton robot was limited to the horizontal plane such that
the gravity does not have an effect the robot. Nevertheless, a
method for estimating the inertia while the robot is moving
in the vertical plane could be useful for other joints such as
the knee joint since moving in the horizontal plane would be
uncomfortable. Calculating the precise values for inertia and
the weight parameters of a human limb is not practical as the
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Fig. 1: Proposed rehabilitation robot model

forearm and the upper arm are connected. The parameters also
change from patient to patient or even for the same patient with
respect to time or the angle of the joint.

Stroke patients are often unable to lift their affected limb
by themselves since their muscles are weakened and lack the
necessary strength. In this case, estimation of gravity effect
of the human arm is useful since the exoskeleton systems can
compensate for the estimated gravity effect of the patient’s
arm. The patient can then engage in the rehabilitation exercises
even at an early stage which would ultimately provide an
early recovery. Knowing the inertia of the patient arm is
advantageous for designing the robust control systems for
rehabilitation robots.

Therefore, in this paper, a novel method for iteratively
estimating the inertia and the gravity effect of the human
arm is presented. The aim is to estimate the inertia and the
gravity effect during the passive rehabilitation exercises. In
this case, it is assumed that the patient does not apply any
external force while the robot is moving the patient’s arm.
At this moment the system will automatically estimate the
parameters. While the system is proposed for the rehabilitation
of the elbow, the same principles can be extended for any limb
of the body. Automatic identification and compensation of the
inertial and gravity torque disturbances leads to the overall
system robustness.

This research uses a sensorless force sensing method using
the Reaction Torque Observer (RTOB) [7]. Conventional force
sensors add weight to the system and have a narrower band-
width. Compared to force sensor based systems, sensorless
force sensing is less noisy. The RTOB can be used with a
higher bandwidth since the bandwidth can be made high as
the sampling frequency.

II. MODELLING

A. Reaction Torque Observer

The proposed elbow rehabilitation device is a single Degree
of Freedom (DoF) device with a DC motor actuator as shown
in Figure 1. The motor is torque controlled. The Figure 2 shows
the classic DC motor model. The generated motor torque is
denoted by (1). Table I shows the nomenclature.

Tm = ktI
ref
a (1)

Fig. 2: DC motor model

TABLE I: Nomenclature

Parameter Description

JT Total inertia of the system
JM Nominal inertia of the motor
JR Nominal inertia of the exoskeleton
JH Inertia of the human forearm
Jn Nominal inertia of the robot system
J Actual inertia of the robot system
ktn Nominal torque constant
kt Actual torque constant

Iref
a Current reference

B Viscous friction coefficient of the robot
FS Static friction of the robot

t̂rec Estimated reaction torque
grec Reaction torque observer gain
mH Mass of the human forearm
mR Mass of the forearm exoskeleton
g Gravitational acceleration
rH Distance from motor axis to COG of human forearm
rR Distance from motor axis to COG of forearm exoskeleton
yk Modified RTOB output

ŷk Estimated yk

W Weight vector
x Input vector
a ADALINE output
d Desired output
e Error
αi Initial learning rate
αf Final learning rate
T Current training time
Tmax Total training time
λ Forgetting factor

The total disturbance acting on the system is denoted
by Tdis. Since the proposed system has only one degree of
freedom, the interactive torque is zero [8]. A reaction torque
observer can be used to estimate the reaction torque without
using any force sensors as shown in Figure 3. It estimates the
reaction torque based on the torque constant and inertia. Here
kt and J are the actual parameters in the system while ktn and
Jn are the nominal parameters. The friction forces are also
compensated to estimate the pure reaction torque. A reliable
estimation of the parameters must be obtained by conducting
several experiments [9]. Once the parameters are known, the
reaction torque can be estimated. The total inertia of the robot
with and without the patient’s arm is denoted by (2) and (3)
respectively.

JT = JM + JR + JH (2)

Jn = JM + JR (3)

The total gravity effect is composed by the patient’s arm
weight and the robot weight as shown in (4). The gravitational



Fig. 3: Reaction Torque Observer

acceleration g = 9.81ms−2.

Tg = mHg cos (θ) rH +mRg cos (θ) rR (4)

The total disturbance torque for the exoskeleton system with-
out the patient’s arm is depicted in (5). The friction forces
of the robot can be found by the experiments as detailed by
Chinthaka et al. [10]. Then the RTOB output can be derived
as in (6).

Tdis = (JM + JR)θ̈ +mRg cos (θ) rR +Bθ̇ + FS (5)

t̂rec = mRg cos (θ) rR +ΔJθ̈ −ΔktI
ref
a (6)

Assuming the human arm elbow joint friction is small and
negligible, and the patient does not provide any external force
to the robot during the passive ROM exercises, the reaction
torque can be modelled as in (7),

t̂rec = JH θ̈k +mHg cos (θk) rH +mRg cos (θ) rR+

ΔJθ̈ −ΔktI
ref
a (7)

The inaccuracies in the nominal inertia and the torque con-
stant causes the RTOB output to contain ΔJθ̈ and ΔktI

ref
a

variations from the actual reaction torque. These variations
can be reduced to near zero with experiments of finding the
inertia and the torque constant [9]. Therefore by neglecting
these variations, the RTOB output can be depicted as in (8).

t̂rec = JH θ̈k +mHg cos (θk) rH +mRg cos (θ) rR (8)

The gravity effect of the robot mechanism could be identified
in advance using a CAD model [11]. A modified output of
the RTOB at kth iteration is obtained by removing the gravity
torque of the robot mechanism as shown in (9).

yk = JH θ̈k +mHg cos (θk) rH (9)

Fig. 4: ADALINE block diagram

It is identical to equation (10) where the parameters of interest
are denoted by w1 and w2.

yk = w1θ̈k + w2 cos (θk) (10)

The measured data is received in an iterative manner and
therefore a complete dataset is not available at once. Although
storing the previous data and using an offline parameter esti-
mation method is possible, in a robot system it might occupy
the microprocessor memory rather quickly. Since it is preferred
for the parameters to be estimated online, an iterative method
which updates the model based on the newly measured data is
essential. Therefore, a learning algorithm such as ADALINE
(ADAptive LInear NEuron) with LMS (Least Mean Square)
learning rule [12] or an adaptive filter such as Recursive Least
Squares (RLS) filter [13] can be convenient. When the angle
of the robot is changing arbitrarily, the RTOB output will
change accordingly. With each newly measured dataset, the
parameters will be updated. Both algorithms were implemented
and simulated.

B. ADALINE

A single ADALINE is represented in Figure 4. The output
of the neuron of the network is shown in (11).

a = purelin(WTX) (11)

ADALINE uses a linear activation function and therefore ŷk =
purelin(a) = a. To find the parameters, a single ADALINE

with 2 inputs is used. Here θ̈k and cos (θk) is modelled as the
input vector as shown in (12).

x(k) = [θ̈k cos (θk)]
T (12)

The parameters that needed to be found are then contained in
the weight vector and it is represented as shown in (13).

W = [w1 w2]
T (13)

The weight vector of the ADALINE neuron is corrected in
every iteration using the Least Mean Square (LMS) algorithm.
The LMS algorithm is shown in (14) and (15) where d(k) is
the target which is the modified output of the RTOB (y(k)).

W (k) = W (k − 1) + 2αe(k)x(k) (14)

e(k) = d(k)− a(k) (15)



Fig. 5: RLS block diagram

The stability and the speed of the algorithm’s convergence
depends on the learning rate α. To attain both stability and
speed, a variable learning rate is used as shown in (16).

α = αi

(
αf

αi

) T
Tmax

(16)

The initial and final learning rates are selected experimentally.

C. Recursive Least Squares

Recursive least squares is an algorithm used for finding
the required coefficients of an input signal x(k) which would
provide the desired signal, in this case it is the modified RTOB
output yk. The block diagram of RLS is shown in Figure 5.
The input x(k) and the weights W (k) are modelled similarly
to the ADALINE method. The forgetting factor λ determines
the effect of the old samples to the estimation process and it
is set experimentally. The recursive algorithm is depicted in
equations (17)-(20).

W (k) = W (k − 1) + L(k)e(k) (17)

e(k) = d(k)− xT (k)W (k − 1) (18)

L(k) =
λ−1P (k − 1)x(k)

1 + λ−1xT (k)P (k − 1)x(k)
(19)

P (k) = λ−1P (k − 1)− λ−1L(k)xT (k)P (k − 1) (20)

The initial value of the parameter covariance matrix P (k) is
given as P (0) = δI . The δ value is set to a very high number
since the real parameters are not known.

III. RESULTS

A simulation of the proposed methods was done using
MATLAB. The system was modelled with robot parameters.
The load was modelled with an arbitrary weight and COG
corresponding to a forearm of a new patient. A PID (Propor-
tional, Integral, Derivative) position controller was engaged to
move the load (forearm) in a sinusoidal angular displacement
throughout a 6s time interval. With the output of the PID
controller (acceleration), the required motor current can be
calculated as shown in Figure 6. A random noise with a
magnitude of ±5% was added to both the input angle and the

Fig. 6: Control block diagram

motor current to mimic the real world scenario. The resultant
data is shown in Figure 7.

(a)

(b)

(c)

(d)

Fig. 7: Simulation data of the system model. (a) Angle. (b)
Angular velocity. (c) Reaction torque. (d) Angular acceleration.

Parameters were estimated for the simulated data using
ADALINE and RLS algorithms as shown in Figure 8 and



(a)

(b)

(c)

Fig. 8: Estimation of the parameters using ADALINE. (a)
Error. (b) Estimated inertia. (c) Estimated gravity torque.

TABLE II: Simulation Parameters

Parameter Value

P 11200.0
I 0.0
D 630.0
dt 0.001 s
Jn 0.1 Nms2rad−1

ktn 1.4 NmA−1

B 0.3925 Nmsrad−1

FS 0.2966 Nm
grec 200.0
αi 0.03
αf 0.00001
λ 0.9998
δ 100000

Figure 9 respectively. Initially, the weight vector was set to a
random value corresponding to anthropometric data [14]. The
simulation parameters are shown in Table II. For ADALINE,
the maximum error of the estimated parameters reduced to
8.31% in 3.003 seconds. The error of estimate gravity torque.
RLS reduced the maximum error of estimated parameters to
6.96% in 1.222 seconds. A comparison of the results are shown
in Table III.

Boxplots representing minimum, maximum and median for
the estimated inertia and gravity torque are shown in Figure 10.
The sample size n = 10. For the estimated inertia using the

(a)

(b)

(c)

Fig. 9: Estimation of the parameters using RLS. (a) Error. (b)
Estimated inertia. (c) Estimated gravity torque.

ADALINE and RLS algorithms, the interquartile range was
0.0004 and 0.0000125 respectively. For the estimated grav-
ity torque the interquartile range for ADALINE was 0.0015
whereas for RLS it was 0.0000675. The algorithms converge
at different points. However in both cases, ADALINE is less
precise and less accurate than RLS.

(a) (b)

Fig. 10: Boxplots for the estimated parameters (n=10). (a)
Estimated inertia. (b) Estimated gravity torque.



TABLE III: Comparison of different estimation methods

Method Estimated inertia (kgm2) %Error Estimated gravity torque (Nm) %Error Average settling time (s)

ADALINE 0.03625 1.08 2.6791 0.20 3.186
RLS 0.03250 0.01 2.6731 0.02 1.827

IV. CONCLUSION

In this paper a novel method of estimating the human arm
inertia and the gravity effect using the RTOB was proposed,
modelled, and simulated considering real world scenarios.
Both ADALINE and RLS algorithms estimated the inertia and
the gravity torque of the patient’s arm in few seconds with
an error smaller than 8.31%. At convergence the errors are
less than 2%. In this experiment the RLS algorithm outper-
formed ADALINE with faster convergence, higher accuracy
and higher precision with the expense of high computational
complexity. As the errors are very small, both algorithms are
suggested for estimating the inertia. The proposed method
is very useful since the patient does not have to perform
any special movement other than the passive ROM exercise.
Parameters were estimated online and almost in real-time. The
methods discussed in this paper can be applied in rehabili-
tation robot design and power assist systems (exoskeletons)
design. Rather than treating the inertia of the human limb
as a disturbance, it could be estimated as proposed. That
makes the control systems robust. Furthermore, estimation and
compensation of the gravity torque allow the patients to access
the full range of motion even if they do not have the required
strength to lift their arm.

REFERENCES

[1] C.-N. Tseng, C. C.-H. Chen, S.-C. Wu, and L.-C. Lin, “Effects of a
range-of-motion exercise programme,” Journal of Advanced Nursing,
vol. 57, no. 2, pp. 181–191, 2007.

[2] R. Riener, T. Nef, and G. Colombo, “Robot-aided neurorehabilitation
of the upper extremities,” Medical and Biological Engineering and
Computing, vol. 43, no. 1, pp. 2–10, 2005.

[3] E. J. Plautz, G. W. Milliken, and R. J. Nudo, “Effects of repetitive motor
training on movement representations in adult squirrel monkeys: role
of use versus learning,” Neurobiology of learning and memory, vol. 74,
no. 1, pp. 27–55, 2000.

[4] P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and M. Van der
Loos, “Robot-assisted movement training compared with conventional
therapy techniques for the rehabilitation of upper-limb motor function
after stroke,” Archives of physical medicine and rehabilitation, vol. 83,
no. 7, pp. 952–959, 2002.

[5] B. Ugurlu, M. Nishimura, K. Hyodo, M. Kawanishi, and T. Narikiyo,
“Proof of concept for robot-aided upper limb rehabilitation using
disturbance observers,” IEEE Transactions on Human-Machine Systems,
vol. 45, no. 1, pp. 110–118, 2015.

[6] F. Mobasser and K. Hashtrudi-Zaad, “A method for online estimation of
human arm dynamics,” in Engineering in Medicine and Biology Society,
2006. EMBS’06. 28th Annual International Conference of the IEEE.
IEEE, 2006, pp. 2412–2416.

[7] A. H. S. Abeykoon and K. Ohnishi, “Improvement of tactile sensation
of a bilateral forceps robot by a switching virtual model,” Advanced
Robotics, vol. 22, no. 8, pp. 789–806, 2008.

[8] M. Mizuochi, T. Tsuji, and K. Ohnishi, “Improvement of disturbance
suppression based on disturbance observer,” in 9th IEEE International
Workshop on Advanced Motion Control, 2006. IEEE, 2006, pp. 229–
234.

[9] G. A. Perera, M. B. Pillai, A. Harsha, and S. Abeykoon, “Dc motor
inertia estimation for robust bilateral control,” in 7th International
Conference on Information and Automation for Sustainability. IEEE,
2014, pp. 1–7.

[10] M. D. Chinthaka and A. H. S. Abeykoon, “Friction compensation of dc
motors for precise motion control using disturbance observer,” ECTI
Transactions on Computer and Information Technology (ECTI-CIT),
vol. 9, no. 1, pp. 74–82, 2015.

[11] F. Just, K. Baur, R. Riener, V. Klamroth-Marganska, and G. Rauter,
“Online adaptive compensation of the armin rehabilitation robot,” in
Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE
International Conference on. IEEE, 2016, pp. 747–752.

[12] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesús, Neural
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